Introduction to GOSIA calculations

Kasia Hadyńska-Klęk

INFN Laboratori Nazionali di Legnaro
$3^{\text {rd }}$ COULEX School, INFN LNL, 28-30.11.2016

What do you need to start

http：／／www－user．pas．rochester．edu／～gosia／mediawiki

－GOSIA source code（you need fortran compiler）
－GOSIA manual（pdf file）
－The current version（20120510）of（ee Gosia manual 䀚
－The latest release（20110524．2）of Gosia

More reliable manual：
－www．old．slcj．uw．pl／gosia －www．slcj．uw．edu．pl／gosia

- The current version of Rachel，the Gosia interface，can be downloaded as a zip file or a Git repository here：master branch 目．Feel free to fork and contribute．
- Pawel 㞕，the Gosia version to treat excitation of a nucleus in an isomer state
- ANNL（Anneal）巴，a special version of Gosia developed by Rich Ibbotson that uses simulated annealing techniques to locate minima
- Sigma 巴，the 2006 Fortran source code for deducing the quadrupole invariants from the E2 matrix elements determined by Gosia
- GREMLIN 巴，the gamma－ray detector efficiency code developed for use with GOSIA in 1987 by Alexander Kavka
－The set of demonstration files［ew to accompany the Gosia tutorial in chapter 14 of the Gosia Manual
－Example input file
－Some research done before you start and
－．．．a lot of patience

Some basic facts

- GOSIA is a Rochester - Warsaw semiclassical coupled-channel Coulomb excitation least-squares search code, developed 30 years ago by T.Czosnyka, D.Cline, C.Y.Wu and continuously upgraded.
http://www.pas.rochester.edu/~cline/Gosia/index.html www.slcj.uw.edu.pl/gosia
- GOSIA is used for:
- analysis (multidimensional fit of matrix elements to the data)
- simulations (probability of excitation, intensities of the gammas)
- GOSIA - fortran code - get used to 'reading it' (*errors will send you to the line number, not to the exact line in your input file)
- GOSIA is a command-line program (*GUI available)
- Input file looks strange and scary..
- Different files needed (options: POIN, STAR, INTG/INTI, MINI, ERRO... require separate input files)
- Be critical and use GOSIA with caution

We are here to help you! :)

How does it work?

- GOSIA solves the set of differential equations, calculates the excitation probabilities, gives you the level populations and gamma-ray intensities
- To get the numbers you MUST specify the experimental conditions (level scheme, matrix elements, spectroscopic data, gamma and particle detection system)
- Additional effects are considered here: gamma detector size and efficiency, internal electron conversion

Simulations - before you start

- Do the research: data base check, level scheme, known lifetimes, branching ratios, $B(E 0, E 1, E 2, E 3 .),. B(M 1)$, mixing ratios, quadrupole moments.
- recalculate the transition strengths into matrix elements.
- Read the papers.
- Ask theorists!
- http://bricc.anu.edu.au/ - electron conversion coefficient calculator
- Calculate the SAFE energy (simulations) for your system
- What is the beam? Energy and scattering angles
- What is the target? How thick? How complex? Energy loss of the beam in the target material is important (ELO, SRIMM programs)
- Normalization method: known target excitation or lifetimes?
- Detectors:
- Gamma array: how many? How far from the target? Size? Efficiency?
- Particle array: theta and phi angles, geometry (CD, PIN, MCP...), dead pixels, useful detection range?

GOSIA input structure

1. OP,FILE - header files (TAPEs)
2. OP,TITL
3. OP,GOSI (with fit) - OP,COUL (without fit)

- LEVE
- ME
- EXPT
- CONT

END,
4. OP,YIEL
5. OP,RAW
6. OP,INTG/INTI
7. OP,MINI
8. OP,ERRO
9. OP,POIN
10. OP,STAR
11. OP,THEO
12. OP, MAP
13. OP, REST
14. OP,GDET
15. OP,SIXJ

OP,FILE

```
2231
mini.out < Output file name
931
gdet.f9 < OP,GDET output
8 }
gdet.f8
1231
matrix.me < Matrix elements
331
yield.f3
```



```Gamma yields
4 3 1
corr.f4
```



```
Corrected gamma yields (after OP,INTG / INTI)
731
map.f7
```



```
OP,MAP output
1431
sixj. 14
```



```
OP,SIXJ output (if this option used)
```


OP,GDET - gamma detector option

OP,GDET

OP,FILE2231gdet.out931gdet.f9
831gdet.f8
000
OP,TITL
Gamma detectors
OP,GDET
-1
0.53 .57 .812 .5
0000000

This option gives the information about the gamma detectors

OP,GDET

OP,FILE		
2231 gdet.out	4	GDET output file - parameters needed to reproduce y energy dependence on the gamma detector solid angle attenuation coeff. Q_{k}
$\begin{aligned} & 931 \\ & \text { gdet.f9 } \end{aligned}$		
831 gdet.f8		GDET output file - absorption coeff. needed to reproduce the detector efficiency, created if NPD is negative - related to "raw" spectra defined in OP,RAW
000	4	End of OP,FILE
OP,TITL Gamma detectors	4	- Title
OP,GDET		
-1	4	OP,GDET input options
0000000		
OP,EXIT		

GOSIA

```
OP,FILE
    2231
    star.out
    00
OP,TITL
    OP,STAR output test
OP,GOSI
    LEVE
        1,1,0,0.0
        2,1,2,1.500
        3,1,4,2.700
        0,0,0,0
    ME
            20000
            1 20.1 1.0-1.0
            2 20.1 1.0-1.0
            2 30.1 1.0-1.0
            00000
    EXPT
            12042
            -79197100100 3 1 1-170 172 0 1
    CONT
            INR,
            INT,1.
            1,1000
            LCK,
            O
            WRN,3.
            PRT,
            O
END,
```


OP,STAR

Command to calculate Coulomb excitation amplitudes and probabilities (not the gamma-ray yields)

OP,GOSI - level scheme

LEVE

1100.0
2121.525
3142.752

0000

1 = GROUND STATE

Which nucleus?

OP,GOSI - matrix elements

We need a set of ME to start with

levels.inp

```
1 1 0 0.0
2 1 2 0.413
3 1 4 1.005
4 0 0.825
5 1 2 0.881
6 1 4 1.208
0000
```


We need a set of ME to start with

levels.inp

1	1	0	0.0
2	1	2	0.413
3	1	4	1.005
4	1	0	0.825
5	1	2	0.881
6	1	4	1.208
0	0	0	0

Level
$\mathrm{E}[\mathrm{MeV}]$

OP,THEO

- generates the ME from rotational model
- generates only the matrix specified in the ME input and writes them to the output file
- For in-band or equal-K interband transitions only one intrinsic moment for a given multipolarity marked Q1 is relevant.
- For non-equal-K values generally two moments with the projections equal to the sum and difference of K's are required (Q1 and Q2), (unless one of the K's is zero, when again only Q1 is needed)
- For the K-forbidden transitions a three parameter Mikhailov formula is used.

OP,THEO for ${ }^{188} \mathrm{Hg}$ (example)

OP,THEO

$$
\left\langle K I_{f}\|\hat{M}(E 2)\| K I_{i}\right\rangle=\sqrt{\left(2 I_{i}+1\right)}\left\langle I_{i}, K, 2,0 \mid I_{f} K\right\rangle \sqrt{\frac{5}{16 \pi}} e \mathbf{Q}_{i}
$$

band member indices
Second band, K and number of states
1,1 Multipolarity E2
Q1, Q (0 Bands 1 and 1 (in-band)
1,2 Moment Q1 of the rotational band
Q1,0,0
band 1
band 2
2,2
$4^{+} \quad 6 \quad 1208$
$\stackrel{\text { Q1,0,0 }}{0,0} \longleftarrow$ end of multipolarities loop
0
$4^{+} 3 \quad 1005$
end of band-band
input

Courtesy: K. Wrzosek-Lipska

OP,GOSI: EXPT

Here we declare the most important details about the experiment:
Energy, angles, Z+A target and projectile

EXPT
 NEXP Z1 A1
 $+/-\mathrm{Z} 2$ A2 Ep $+/-\theta_{\text {proj }}$ Mc Ma IAX $\varphi 1 \varphi 2$ IKIN LN

EXPT
22042
-79 197167122311 -170 17201
-82 208167122311 -170 17202

- ${ }^{42} \mathrm{Ca}$ beam on
${ }^{197} \mathrm{Au}$ and ${ }^{208} \mathrm{~Pb}$ targets

OP,YIEL

```
OP,YIEL
O
5
0.1 0.30.51.01.5
1
0.000829 2.41E-5 5.60E-6 1.143E-6 0.000269
2
0.01175 0.0001328 2.06E-5 2.59E-6 8.94E-5
5
12345
25 55 85 130 172
4075 270 325 59
12345
25 55 85 130 172
4075 270 325 59
21
1 !EXP1
0 . 0 0 0 1
1
1
!EXP2
0 . 0 0 0 1
1
3
```

Here we put Information about:

- electron conversion coefficients
- gamma detection geometry
- normalization transition
- type of our analysis

OP,YIEL

1.0			
	4542	0.007	0.003
	5152	0.34	0.02
2	1.0		
	21.19	0.04	
	$3 \quad 4.45$	0.10	
1	1.0		
	62-0.18		0.02
1	1.0		
	222	-0.25	0.051

Here we put Information about the spectroscopic data:

- lifetimes,
- branching ratios,
- mixing ratios,
- known transition probabilities

```
0
0 0 \text { in case nothing is known}
00 about the investigated nucleus
0
```


YIELD definition

POINT

- One energy (E)
- One angle (Θ)
as defined in EXPT use OP,POIN

INTEGRATED

- Energy range
$\left(E_{\min }-E_{\max }\right)$
- Angular range
$\left(\Theta_{\min }, \varphi_{\min }\right)-\left(\Theta_{\max }, \varphi_{\max }\right)$
as defined in OP,INTG / INTI

Matrix elements values, excitation probability

OP,POIN

- This option evaluates the point gamma yield in the laboratory frame for the $I_{i} \rightarrow l_{f}$ transition for one energy and one particle scattering angle given in EXPT

$$
Y^{\text {Point }}\left(I \rightarrow I_{f}\right)=\sin \left(\theta_{p}\right) \int_{\phi_{p}} \frac{d^{2} \sigma\left(I \rightarrow I_{f}\right)}{d \Omega_{\gamma} d \Omega_{p}} d \phi_{p}
$$

- includes the Rutherford cross section, the $\sin (\Theta)$ term, integration over the projectile φ scattering angle, the deorientation effect and gamma-detector attenuation coefficients (from OP,GDET)
- Calculates the yield for one system - defined as one $\boldsymbol{\theta}$-E point
- We use OP,POIN after OP,YIEL

But..

- In real life we use REAL detectors with continuous dimensions

Why integration?

- REAL conditions - GOSIA calculates yields from ME to get realistic comparison with experimental data
- integration over solid angle of the particle detectors, energy loss in the target, full correction for the velocity of the deexciting nucleus and the deorientation effect is included
- the Rutherford scattering is integrated over the particle detectors and energy loss in the target - an absolute normalization.
- the 'GOSIA yield' may be understood as a mean differential cross section multiplied by a target thickness (in mg/cm²)
$[\mathrm{Y}]=[\mathrm{mb} / \mathrm{sr}] \times\left[\mathrm{mg} / \mathrm{cm}^{2}\right]$

OP,INTG

2 stages:

- y yields integrated over azimuthal angle $\boldsymbol{\varphi}$ for each energy \mathbf{E} and center-of-mass scattering angle $\boldsymbol{\theta}$ meshpoint. The calculation of the meshpoint yields is repeated for each experiment (as declared in EXPT) - point yields
- integration over bombarding energy \mathbf{E} and the range of scattering angles $\boldsymbol{\theta}$ of the particle detectors which is performed by interpolating between the yields calculated at each E- $\boldsymbol{\theta}$ meshpoint
(*circular detectors option recommended)

$$
\left.\begin{array}{l}
\text { OP,INTG } \\
\text { NE }+/-N T \quad E_{\min } E_{\max } \theta_{\min } \quad \theta_{\max } \\
E_{1} E_{2} \ldots E_{N E} \\
+/-\theta_{1}+/-\theta_{2} \ldots+/-\theta_{\mathrm{NE}} \\
\mathrm{NFI} \\
\varphi_{1} \varphi_{2} \ldots \\
\mathrm{NP} \\
\mathrm{E}_{1} \mathrm{E}_{2} \ldots \mathrm{E}_{\mathrm{NP}} \\
(\mathrm{dE} / \mathrm{dx})_{1} \\
(\mathrm{dE} / \mathrm{dx})_{2}
\end{array} \quad \ldots \quad(\mathrm{dE} / \mathrm{dx})_{\mathrm{NP}}\right)
$$

OP,INTI

- integration of systems involving inverse kinematics - when the recoiling target nucleus is detected ($\rightarrow 2$ kinematic solution).

For each beam E and each angle the special subroutine INVKIN calculates the appropriate value of kinematic flag and set it automatically
Θ angles correspond to laboratory scattering angles of the detected particle

- the angle of the scattered projectile if it is detected
- the angle of the recoiling target nucleus if it is detected.

Annular strip no.
N. Bree, PhD thesis, KULeuven,

OP,INTI !for axial sym. and circ. det.
89226240133168
226228230232234236238240
133135140145150155160165168
8
226228230232234236238240
12.212 .1712 .1312 .1012 .0512 .0011 .9011 .80 20,20

OP,INTG / INTI - yield correction

- Minimization of is usually performed using corrected yields
- Correction depends on the set of ME: GOSIA calculates the point yield $\left(Y_{p}\right)$ and the integrated yield $\left(Y_{1}\right)$ from the ME and gives the correction factors CF for each experimental yield (OP,CORR needed):

$$
\mathrm{CF}=\frac{Y_{P}}{Y_{I}} \longrightarrow \mathbf{Y}_{\exp }^{\mathbf{c}}=\mathbf{Y}_{\exp } \cdot \mathbf{C F}
$$

After minimization the correction procedure should be repeated with a new set of ME (better fit, different correction) \rightarrow until the solution is converged

- CF are calculated for each experimental yield

$$
\begin{aligned}
& { }^{42} \mathrm{Ca} \text { on }{ }^{197} \mathrm{Au} \\
& \mathrm{E}_{\mathrm{av}}=167 \mathrm{MeV} \\
& \Theta_{\mathrm{av}}=122^{\circ}
\end{aligned}
$$

EXPERIMENT 2			DETECTOR 1	
NI	NF	YEXP	YCOR	COR.F
			$.112 \mathrm{E}+00$	$.113 \mathrm{E}+00$
3	2	$.101 \mathrm{E}+01$		
6	1	$.380 \mathrm{E}-01$	$.374 \mathrm{E}-01$	$.984 \mathrm{E}+00$
6	2	$.106 \mathrm{E}+00$	$.102 \mathrm{E}+00$	$.966 \mathrm{E}+00$
5	2	$.854 \mathrm{E}+00$	$.822 \mathrm{E}+00$	$.962 \mathrm{E}+00$
2	1	$.124 \mathrm{E}+02$	$.120 \mathrm{E}+02$	$.969 \mathrm{E}+00$

GOSIA AS A SIMULATION TOOL: YIELD \Rightarrow COUNT RATE

$$
\text { Counts }=10^{-27} \cdot\left[\frac{Q}{\hat{q} e}\right] \cdot\left[\frac{N_{A}}{A}\right] \cdot[\rho d x] \cdot Y^{I N T G}\left(I \rightarrow I_{f}\right) \cdot \Delta \theta_{p} \cdot \varepsilon_{p} \cdot \varepsilon_{\gamma} \cdot \Delta \Omega_{\gamma}
$$

Where:
Q - integrated beam charge [C]
q - the average charges state of the beam
e - the proton charge [1.602 $\times 10^{-19} \mathrm{C}$]
N_{A} - Avogadro number [6.022 $\times 10^{23}$ atoms $/ \mathrm{mol}$]
A - target mass number [$\mathrm{g} / \mathrm{mol}$] $\rho d x$ - areal target thickness [g/cm²]
YiNTG $\left(I \rightarrow I_{f}\right)$ OP,INTG or OP,INTI output in [mb/sr/rad]
$\Delta \theta_{\mathrm{p}}$ - projectile scattering angle range [rad]
ε_{p} - particle detection efficiency per unit solid angle
ε_{y} - gamma detection efficiency excluding the geometrical solid angle
$\Delta \Omega_{y}$ - geometrical solid angle of the gamma-ray detector. Note that usually one only
knows the product $\varepsilon_{\mathrm{y}}{ }^{*} \Delta \Omega_{\mathrm{y}}$

Count Rate $=\frac{7.6 \times 10^{-6} \times \text { yield } \times \text { current }[\mathrm{pps}] \times \text { eff }}{A_{\text {target }}}$

OP,RAW

- This option needs energy-dependent efficiency calibration for each individual gamma detector (GREMLIN, EFFIT..)
- the first entry of OP,GDET should be negative to produce the TAPE8
- Need to declare which efficiency parametrization you need!
- Do not use if all gamma intensities are efficiency-corrected

OP,MINI χ^{2} function minimization

The fitting procedure is continued, until the convergence of the χ^{2} is achieved and the set of matrix elements optimally reproduce the experimental data.

Remember to run OP,MAP before OP,MINI, each time you change something in ME (insert OP,MAP command directly after OP,YIEL). This option stores the q-parameters important for reorientation effect (effective strength, related to the magnetic sub-states coupling) on TAPE7

OP,ERRO

- for estimating the error bars to be assigned to the set of matrix elements corresponding to the minimum value of χ^{2}

```
Mode flag: OP,ERRO
0-diagonal \longrightarrowIDF MS MEND IREP IFC RMAX
1 - correlated
```

- two separate stages:

1. the "diagonal",or uncorrelated errors (calculated individually for each matrix element) and write them on TAPE15

0 MS MEND 0 O RMAX
2. the "overall", or correlated errors (the total errors which are the widths of projections on each matrix element's axis of the minimum at the $\chi^{2}=x^{2}+1$ level).

1 MS MEND 11 RMAX

What else is there?

- There are other options, which can or should be used depending on the analysis needs (OP,STAR; OP,SIXJ; OP,RAND; OP,TROU; OP,BRIC..)
- GOSIA2 for the radioactive beam experiments \rightarrow target normalization tool
- RACHEL (GUI gosia)
- SIGMA - quadrupole sum rules code \rightarrow shape invariants \rightarrow deformation parameters

