Nuclear deformation and shape coexistence

Kasia Hadyńska-Klęk

INFN Laboratori Nazionali di Legnaro

3rd COULEX School, INFN LNL, 28-30.11.2016

Nuclear shapes - examples

prolate triaxial

More!

Coulomb excitation is a precise tool to measure collectivity of nuclear excitations – in particular nuclear shapes

The observables related to the quadrupole collectivity and shape of a nucleus are:

- the reduced transition probabilities
- spectroscopic quadrupole moments

Shape coexistance

Presence at low energy near-degenerate states in atomic nucleus characterized by different shape.

Interplay between two opposing tendencies

- Stabilizing effect of closed shells (subshells) → sphericity
- \circ Residual proton-neutron interaction → deformation

A. Andreyev et al Nature 405:430 (2000)

Shape coexistence at and around closed proton and/or neutron (sub)shells.

What do we measure?

- 1. The level scheme
- \rightarrow low-lying 0+ states.
- 2. E0 transitions, $\rho^2(E0)$: $\rho^2(E0) = (Z^2/R_0^4) \cdot \alpha^2 \cdot \beta^2 [\Delta \langle r^2 \rangle]^2$
- \rightarrow wave function mixing,

3. Reduced transition probabilities , B(E2).

$$P(T\lambda; I_i \to I_f) = \frac{8\pi(\lambda+1)}{\lambda \left((2\lambda+1)!! \right)^2} \frac{1}{\hbar} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2\lambda+1} \cdot B(T\lambda; I_i \to I_f)$$

$$B(T\lambda; I_i \to I_f) = \frac{1}{2I_i + 1} |\langle I_f \| \hat{M}(T\lambda) \| I_i \rangle|^2$$

4. Quadrupole moments Q.

What do we measure?

- 1. The level scheme
- \rightarrow low-lying 0⁺ states.
- 2. E0 transitions, $\rho^2(E0)$: $\rho^2(E0) = (Z^2/R_0^4) \cdot \alpha^2 \cdot \beta^2 [\Delta \langle r^2 \rangle]^2$
- \rightarrow wave function mixing,

3. Reduced transition probabilities , B(E2).

$$P(T\lambda; I_i \to I_f) = \frac{8\pi(\lambda+1)}{\lambda \left((2\lambda+1)!! \right)^2} \frac{1}{\hbar} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2\lambda+1} \cdot B(T\lambda; I_i \to I_f)$$

$$B(T\lambda; I_i \to I_f) = \frac{1}{2I_i + 1} |\langle I_f \| \hat{M}(T\lambda) \| I_i \rangle|^2$$

4. Quadrupole moments Q.

DEFORMATION

Coulomb excitation and nuclear shapes

Quadrupole Sum Rules

- Electric multipole transition operator, $E(\lambda,\mu)$, is a <u>spherical tensor</u> and its zero-coupled products can be formed, which are <u>rotationally invariant</u> they are identical and describe nuclear shape in both intrinsic frame and the laboratory frame
- The following parametrization of E2 operator is general, model independent and analogous to expressing the radial shape of a quadrupole-deformed object in terms of Bohr's shape parameters (β,γ)

 $E(2,0) = Q\cos\delta$ E(2,1) = E(2,-1) = 0 $E(2,2) = E(2,-2) = (1/\sqrt{2}) \cdot Q\sin\delta$

- Using this parametrization the zero-coupled products of the E2 operators can be formed in terms of Q and δ

$$[E2 \times E2]^0 = \frac{1}{\sqrt{5}}Q^2$$
$$\left[E2 \times E2\right]^2 \times E2 \Big\}^0 = \frac{\sqrt{2}}{\sqrt{35}}Q^3 \cos 3\delta$$

• the matrix elements of the E2 operator products can be evaluated using the **basic** intermediate state expansion

$$\left\langle s \left| (E2 \times E2)^J \right| r \right\rangle = \frac{(-1)^{I_s + I_r}}{(2I_s + 1)^{1/2}} \sum_t \left\langle s \left| |E2| \right| t \right\rangle \left\langle t \left| |E2| \right| r \right\rangle \left\{ \begin{array}{ccc} 2 & 2 & J \\ I_s & I_r & I_t \end{array} \right\}$$

Quadrupole Sum Rules – nuclear shapes

• Now let's combine the approaches:

$$\begin{aligned} \frac{\langle Q^2 \rangle}{\sqrt{5}} &= \left\langle \mathbf{i} \| [E2 \times E2]_0 \| \mathbf{i} \right\rangle \\ &= \frac{(-1)^{2I_i}}{\sqrt{(2I_i+1)}} \cdot \sum_t \left\langle \mathbf{i} \| E2 \| t \right\rangle \left\langle t \| E2 \| \mathbf{i} \right\rangle \left\{ \begin{array}{ll} 2 & 2 & 0 \\ I_i & I_i & I_t \end{array} \right\}, \end{aligned}$$

and

$$\begin{split} \sqrt{\frac{2}{35}} \langle Q^3 \cos(3\delta) \rangle &= \left\langle i \left\| \begin{bmatrix} E2 \times E2 \end{bmatrix}_2 \times E2 \end{bmatrix}_0 \right\| i \right\rangle \\ &= \frac{(\pm 1)}{\left(2I_i + 1\right)} \cdot \sum_{t,u} \left\langle i \| E2 \| u \right\rangle \left\langle u \| E2 \| t \right\rangle \left\langle t \| E2 \| i \right\rangle \left\{ \begin{array}{ccc} 2 & 2 & 2 \\ I_i & I_t & I_u \end{array} \right\}, \end{split}$$

In practice..

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024012

K Wrzosek-Lipska and L P Gaffney

Figure 7. A schematic illustration of an example products of *E*2 matrix elements taken into account to calculate lowest order invariants: $\langle Q^2 \rangle$ (left) and $\langle Q^3 \cos(3\delta) \rangle$ (right) for the case of the 0⁺ ground state of even–even nucleus.

In practice..

K. WRZOSEK-LIPSKA et al. PHYSICAL REVIEW C 86, 064305 (2012)

TABLE IX. Contribution of individual matrix elements to the values of the $\langle 0_1^+ | Q^2 | 0_1^+ \rangle$ and $\langle 0_2^+ | Q^2 | 0_2^+ \rangle$ invariants in ¹⁰⁰Mo. The $\sqrt{5} \times \{ \begin{smallmatrix} 2 & 2 & 0 \\ 0 & 0 & 2 \end{smallmatrix} \}$ factor, multiplying the contributions according to Eqs. (3) and (4), is in this case equal to 1.

State	$\begin{array}{c} \text{Component} \\ E2 \times E2 \end{array}$	Contribution to $\langle Q^2 \rangle (e^2 b^2)$		
01+	$\begin{array}{c} \langle 0_{1}^{+} \ E2 \ 2_{1}^{+} \rangle \langle 2_{1}^{+} \ E2 \ 0_{1}^{+} \rangle \\ \langle 0_{1}^{+} \ E2 \ 2_{2}^{+} \rangle \langle 2_{2}^{+} \ E2 \ 0_{1}^{+} \rangle \end{array}$	0.46 0.01		
	$ \begin{array}{c} \langle 0_{1}^{+} \ E2 \ 2_{3}^{+} \rangle \langle 2_{3}^{+} \ E2 \ 0_{1}^{+} \rangle \\ \langle 0_{1}^{+} Q^{2} 0_{1}^{+} \rangle \end{array} $	0.0002 0.47(3)		
0_{2}^{+}	$ \langle 0_{2}^{+} \ E2 \ 2_{1}^{+} \rangle \langle 2_{1}^{+} \ E2 \ 0_{2}^{+} \rangle \langle 0_{2}^{+} \ E2 \ 2_{2}^{+} \rangle \langle 2_{2}^{+} \ E2 \ 0_{2}^{+} \rangle \langle 0_{2}^{+} \ E2 \ 2_{2}^{+} \rangle \langle 2_{2}^{+} \ E2 \ 0_{2}^{+} \rangle $	0.26 0.10		
	$\begin{array}{c} \langle 0_{2}^{+} \ E2 \ 2_{3}^{+} \rangle \langle 2_{3}^{+} \ E2 \ 0_{2}^{+} \rangle \\ \langle 0_{2}^{+} Q^{2} 0_{2}^{+} \rangle \end{array}$	0.25 0.62(3)		

In practice..

K. WRZOSEK-LIPSKA et al. PHYSICAL REVIEW C 86, 064305 (2012)

TABLE X. Contribution of individual matrix elements to the values of the $\langle 0_1^+ | Q^3 \cos(3\delta) | 0_1^+ \rangle$ and $\langle 0_2^+ | Q^3 \cos(3\delta) | 0_2^+ \rangle$ invariants in ¹⁰⁰Mo. Presented invariants, accordingly to Eqs. (5) and (6), result from the multiplication of the sum of all contributions by the factor $(-1) \times \sqrt{\frac{35}{2}} \times \{ \begin{smallmatrix} 2 & 2 & 2 \\ 0 & 2 & 2 \end{smallmatrix} \}$, equal to -0.837.

State	Component $E2 \times E2 \times E2$	Contribution to $\langle Q^3 \cos 3\delta \rangle (e^3 b^3)$				
0_{1}^{+}	$ \begin{array}{c} \langle 0_1^+ \ E2 \ 2_1^+ \rangle \langle 2_1^+ \ E2 \ 2_1^+ \rangle \langle 2_1^+ \ E2 \ 0_1^+ \rangle \\ \langle 0_1^+ \ E2 \ 2_1^+ \rangle \langle 2_1^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 0_1^+ \rangle \\ \langle 0_1^+ \ E2 \ 2_1^+ \rangle \langle 2_1^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 0_1^+ \rangle \\ \langle 0_1^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 0_1^+ \rangle \\ \langle 0_1^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 0_1^+ \rangle \\ \langle 0_1^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 0_1^+ \rangle \\ \langle 0_1^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 0_1^+ \rangle \end{array} $	$\begin{array}{r} -0.155 \\ 0.132 \\ 0.002 \\ 0.013 \\ -0.001 \\ -0.0001 \end{array}$				
0_{2}^{+}	Sum of all contributions $\langle 0_1^+ Q^3 \cos(3\delta) 0_1^+ \rangle$ $\langle 0_2^+ \ E2 \ 2_1^+ \rangle \langle 2_1^+ \ E2 \ 2_1^+ \rangle \langle 0_2^+ \ E2 \ 2_1^+ \rangle$ $\langle 0_2^+ \ E2 \ 2_1^+ \rangle \langle 2_1^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 0_2^+ \rangle$ $\langle 0_2^+ \ E2 \ 2_1^+ \rangle \langle 2_1^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 0_2^+ \rangle$ $\langle 0_2^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 0_2^+ \rangle$ $\langle 0_2^+ \ E2 \ 2_2^+ \rangle \langle 2_2^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 0_2^+ \rangle$ $\langle 0_2^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 2_3^+ \rangle \langle 2_3^+ \ E2 \ 0_2^+ \rangle$	$\begin{array}{r} -0.009\\ 0.01(6)\\ -0.09\\ -0.31\\ -0.04\\ 0.12\\ -0.13\\ -0.06\end{array}$				
	Sum of all contributions $\langle 0_2^+ Q^3 \cos(3\delta) 0_2^+ \rangle$	-0.51 0.42(6)				

Quadrupole Sum Rules – nuclear shapes

- The lowest-order products of **E2** operator provide information on the **intrinsic quadrupole deformation parameters** of a nucleus:
 - the overall quadrupole deformation (Q²)
 - the non-axiality parameter (cos(3δ)):

 $cos(3\delta)$ =-1 OBLATE, $cos(3\delta)$ =1 PROLATE, $cos(3\delta)$ =0 TRIAXIAL

A. Andreyev et al Nature 405:430 (2000)

 Higher order rotational invariants can be formed with the different J couplings, involving summation over different sets of the reduced E2 matrix elements

Prolate, oblate, spherical? Or triaxial?

- 1. The sum rules derived from the rotational invariants allow measurement of the **expectation values** of rotational invariants built of **Q** and δ
- 2. It is possible to find the statistical distribution of Q^2 and cos3 δ i.e. the first statistical moments related to the <u>softness</u> in both parameters

SHAPE PARAMETERS

$$\frac{1}{\sqrt{5}}\langle Q^2 \rangle = \frac{1}{\sqrt{2l_i+1}} \sum_t \langle i \| E2 \| t \rangle \langle t \| E2 \| f \rangle \left\{ \begin{array}{ll} 2 & 2 & 0\\ l_i & l_f & l_t \end{array} \right\}$$

$$\langle Q^3 \cos(3\delta) \rangle = \mp \frac{\sqrt{35}}{\sqrt{2}} \frac{1}{\sqrt{2I_i + 1}} \sum_{tu} \langle s \| E2 \| u \rangle \langle u \| E2 \| t \rangle \langle t \| E2 \| s \rangle \begin{cases} 2 & 2 & 2 \\ I_s & I_t & I_u \end{cases}$$

$$\begin{split} \beta &= \sqrt{\left< \beta^2 \right>} = \sqrt{\frac{\left< Q^2 \right>}{q_0^2}}, \\ \gamma &= \arccos\left< \cos(3\delta) \right>, \end{split}$$

J. Srebrny and D. Cline, Int. J. Mod. Phys. E20, 422 (2011)

Shape coexistence in ⁴²Ca

Superdeformed band in ⁴⁰Ca (DSAM, ANL)

B(E2; $4^+ \rightarrow 2^+$) = 170 Wu Q_t=1.80(+10.39,-0.29) eb β_2 =0.59(+0.11,-0.07)

E. Ideguchi et al., PRL 87, 222501 (2001), C.J. Chiara et al., PRC 67, 041303R (2003)

COULEX of ⁴²Ca

- INFN LNL
- Beam: ⁴²Ca, 170 MeV
- Targets:
 - ²⁰⁸Pb, 1 mg/cm²
 - ¹⁹⁷Au, 1 mg/cm²
- AGATA: 3 triple clusters, 143.8 mm from the target
- DANTE: 3 MCP detectors, 100-144°

GOSIA analysis - ⁴²Ca

K. Hadyńska-Klęk, P. Napiorkowski, M. Zielińska *et al.*, PRL 117, 062501 (2016)

<u>2 experiments, 9 gamma yields</u>	
10 branching ratios	
<u>9 lifetimes</u>	26 ME
<u>2 mixing ratio</u>	E2 and M1
<u>1 known quadrupole moment</u>	

	$\langle I_i \ E2 \ I_f \rangle \ [e \ { m fm}^2]$	$B(E2\downarrow;I_i^+$	$^{+} \rightarrow I_{f}^{+})$ [W.u.]
$I_i^+ \rightarrow I_f^+$	Present	Present	Previous
$2^+_1 \to 0^+_1$	$20.5^{+0.6}_{-0.6}$	$9.7^{+0.6}_{-0.6}$	9.3 ± 1 [36]
			11 ± 2 [28]
			9±3 [27]
			8.5 ± 1.9 [45]
$4^+_1 \rightarrow 2^+_1$	$24.3^{+1.2}_{-1.2}$	$7.6^{+0.7}_{-0.7}$	50 ± 15 [28]
			11 ± 3 [27]
	102		10^{+10}_{-8} [45]
$6^+_1 \to 4^+_1$	$9.3^{+0.2}_{-0.2}$	$0.77^{+0.03}_{-0.03}$	0.7 ± 0.3 [27]
$0^+_2 \to 2^+_1$	$22.2^{+1.1}_{-1.1}$	57^{+6}_{-6}	64 ± 4 [27]
			100 ± 6 [28]
			55 ± 1 [42]
			64 ± 4 [45]
$2^+_2 \rightarrow 0^+_1$	$-6.4^{+0.3}_{-0.3}$	$1.0^{+0.1}_{-0.1}$	2.2 ± 0.6 [28]
			1.5 ± 0.5 [27]
			1.2 ± 0.3 [45]
$2^+_2 \rightarrow 2^+_1$	$-23.7^{+2.3}_{-2.7}$ -	$12.9^{+2.5}_{-2.5}$	17 ± 11 [28]
			19^{+22}_{-14} [27]
			14^{+35}_{-9} [45]
$4^+_2 \rightarrow 2^+_1$	42^{+3}_{-4}	23^{+3}_{-4}	30 ± 11 [28]
2 .	4		16 ± 5 [27]
			12^{+7}_{-4} [45]
$2^+_2 \to 0^+_2$	26 ⁺⁵ ₋₃	15^{+6}_{-4}	< 61 [27]
			< 46 [45]
$4^+_2 \to 2^+_2$	46^{+3}_{-6}	27^{+4}_{-6}	60 ± 30 [27]
			60 ± 20 [28]
			40^{+40}_{-30} [45]
	$\left< I_i \ E2 \ I_f \right> [e~{\rm fm}^2]$	Q_{sp}	, $[e \text{ fm}^2]$
$2^+_1 \rightarrow 2^+_1$	-16^{+9}_{-3}	-12^{+7}_{-2}	-19 ± 8 [36]
$2^+_2 \rightarrow 2^+_2$	-55^{+15}_{-15}	-42^{+12}	
2 2	-15		

cos(3δ)~0 – triaxial GS?? In spherical ⁴⁰Ca region?

In spherical ⁴⁰Ca region?

SHAPE PARAMETERS

$$\frac{1}{\sqrt{5}}\langle Q^2 \rangle = \frac{1}{\sqrt{2l_i+1}} \sum_t \langle i \| E2 \| t \rangle \langle t \| E2 \| f \rangle \left\{ \begin{array}{ll} 2 & 2 & 0\\ l_i & l_f & l_t \end{array} \right\}$$

$$\langle Q^3 \cos(3\delta) \rangle = \mp \frac{\sqrt{35}}{\sqrt{2}} \frac{1}{\sqrt{2I_i + 1}} \sum_{tu} \langle s \| E2 \| u \rangle \langle u \| E2 \| t \rangle \langle t \| E2 \| s \rangle \begin{cases} 2 & 2 & 2 \\ I_s & I_t & I_u \end{cases}$$

$$\begin{split} \beta &= \sqrt{\left< \beta^2 \right>} = \sqrt{\frac{\left< Q^2 \right>}{q_0^2}}, \\ \gamma &= \arccos\left< \cos(3\delta) \right>, \end{split}$$

J. Srebrny and D. Cline, Int. J. Mod. Phys. E20, 422 (2011)

Non-zero Q^2 for the ground state could be caused by **fluctuations** around the spherical shape...

If so, the maximum triaxiality could be the effect of averaging over <u>all</u> <u>possible shapes</u>.

How can we check it?

Non-zero Q^2 for the ground state could be caused by **fluctuations** around the spherical shape...

If so, the maximum triaxiality could be the effect of averaging over <u>all</u> <u>possible shapes</u>.

How can we check it?

The dispersion of Q^2 , $\sigma(Q^2)$, should be comparable to Q^2 value

Non-zero Q^2 for the ground state could be caused by **fluctuations** around the spherical shape...

If so, the maximum triaxiality could be the effect of averaging over <u>all</u> <u>possible shapes</u>.

How can we check it?

The dispersion of Q^2 , $\sigma(Q^2)$, should be comparable to Q^2 value

What is dispersion?

Nuclear shapes AGAIN

$$\sigma(Q^2) = \sqrt{\langle Q^4 \rangle - \langle Q^2 \rangle^2}$$

The experimental data are insufficient... But we can try to use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F. Nowacki, H. Naidja Strasbourg)
- Beyond Mean Field (T. Rodriguez Madrid)

The experimental data are insufficient... But we can try to use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F. Nowacki, H. Naidja Strasbourg)
- Beyond Mean Field (T. Rodriguez Madrid)

The experimental data are insufficient... But we can try to use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F. Nowacki, H. Naidja Strasbourg)
- Beyond Mean Field (T. Rodriguez Madrid)

	Present		LS	SM	BMF		
state	$\langle Q^2 \rangle$		$\langle Q^2 \rangle$	$\sigma(Q^2)$	$\langle Q^2 \rangle$	$\sigma(Q^2)$	
0^+_1	500 (20		300	500	100	300	
2_1^+	900 (100)	300	500	100	300	
0^+_2	1300 (23))	1460	400	1900	400	
2_2^+	1400 (25)))	1390	200	1900	300	
		cos(<i>30</i>)					
	Present		LS	\mathbf{SM}	BMF		
0^+_1	$0.06^{+0.10}_{-0.10}$))	0.35		0.34		
0_2^+	$0.79^{+0.13}_{-0.13}$	3	0	.53	0.49		

TABLE II. Experimental and theoretical shape parameters $\langle Q^2 \rangle$ [e²fm⁴], $\sigma(Q^2)$ [e²fm⁴] and cos(3 δ).

 0_1 of ⁴²Ca is SPHERICAL with large fluctuations around minimum 0_2 state is SLIGHTLY TRIAXIAL/PROLATE shape

- Is a separate fortran program (you need to compile it like GOSIA)
- Very useful tool to evaluate the Quadrupole Sum Rule Method
- SIGMA uses the output files from GOSIA but can be also used separately (for expectation values estimation)
- Calculates the shape invariants and estimates their errors (if asked)
- Input is not complicated
- Output is full of information

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP,SIXJ in GOSIA to calculate the table of 6j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP,SIXJ in GOSIA to calculate the table of 6j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

sigma.inp

IL NST TAPE3.smr TAPE15.err TAPE14.tab

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP,SIXJ in GOSIA to calculate the table of 6j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP,SIXJ in GOSIA to calculate the table of 6j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

sigma.inp

The mode of error calculations -1 – no error estimation (SIGMA can be independent from GOSIA if you use this option) 0 – errors will be calculated only for Q2, three values of v(Q2) and four of cos3d for each state 99 – error will be calculated for each statistical moment (too long and complicated)

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP,SIXJ in GOSIA to calculate the table of 6j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

INDEX= 5 SPIN= 0.0 ENERGY= 1.8370

SIGMA.OUT

Q2 ERROR 0.1313 -0.0233 0.0281

_						-					_
Γ	Q4(0) 0.0185	VARIANCE 0.0012	E -0.0002	ERROR 0.0002	SQRT(\ 0.0349	/AR) -0.0033	ERROR 0.0033	SQRT(\ 0.2656	/AR)/Q2 -0.0254	ERROR 0.0251	
	Q4(2) 0.0292	VARIANCE 0.0120	E -0.0062	ERROR 0.0061	SQRT(\ 0.1095	/AR) -0.0333	ERROR 0.0249	SQRT(V 0.8337	/AR)/Q2 -0.2539	ERROR 0.1895	
	Q4(4) 0.0174	VARIANCE 0.0002	E -0.0053	ERROR 0.0035	SQRT(\ 0.0124 *	- /AR) ********	ERROR 0.0481	SQRT(\ 0.0945 **	/AR)/Q2 *******	ERROR 0.3662	
	Q6(0) 0.0026	SKEWNES -0.0001	6S 0.0000	ERROR 0.0000							•
	Q6(2) 0.0053	SKEWNES -0.0017	SS 0.0000	ERROR 0.0000		-					
	Q6(4) 0.0027	SKEWNES 0.0003	SS 0.0000	ERROR 0.0000		-				•	
	Q3CO5 0.0385	6(3D) COS(0.7882	(3D) -0.1262	ERROR 0.1257	INT.Q 0.0488	3		$\sigma(Q^2)$	$^{2}) =$	$\sqrt{\langle Q^4 \rangle}$	_ (
	Q5COS 0.0051	6(3D)(0) CO 0.7275	S(3D) -0.1311	ERROR 0.1240	INT.Q 0.0070	Q5	L		/	V (C /	
	Q5COS 0.0034	6(3D)(2) CO 0.2763	S(3D) -0.1246	ERROR 0.1608	INT.Q 0.0123	- 25		The	e dis	persior	of ۱
	Q5COS 0.0044	S(3D)(4) COS 0.6573	S(3D) -1.7129	ERROR 0.8310	INT.Q 0.0067	- 25					
	<cos2 0.5604</cos2 	(3D)>(1) VA -0.0609	RIANCE 0.0000	ERROR 0.0000	SQF 0.0000	- RT(VAR) 0.0000	ERR 0.0000	OR			
	<cos2 0.4387</cos2 	(3D)>(2) VA -0.1825	RIANCE 0.0000	ERROR 0.0000	SQF 0.0000	- RT(VAR) 0.0000	ERR 0.0000	OR			
	<cos2 0.7389</cos2 	(3D)>(3) VA 0.1176	RIANCE 0.0000	ERROR 0.0000	SQF 0.3430	- RT(VAR) 0.0000	ERR 0.0000	OR			

Conclusions

- > Quadrupole sum rules method allows to study nuclear shapes in different states
- It can be useful when you want to compare the experimental results with theory
- SIGMA works with GOSIA → fast calculations of nuclear shapes

 $(\rightarrow$ hands-on session)

Conversion electrons in GOSIA

- Coulex cross section calculation \rightarrow matrix elements determined from the γ -ray decay.
- A competetive to γ -ray emission is another electromagnetic process \rightarrow internal conversion.
- Usually electrons are not measured in Coulex run → GOSIA evaluates the loss in conversion.
- OP, YIEL in GOSIA \rightarrow Internal Conversion Coeffcients for the E λ and M λ transitions.

 $\alpha = \lambda_e / \lambda_\gamma$

the ratio of the decay probability arising from γ emision (λ_{γ}) and from electron emision (λ_{e}).

A nonrelativistic calculation gives the analytic relations for α:

$$\alpha(EL) \cong \frac{Z^3}{n^3} \left(\frac{L}{L+1}\right) \left(\frac{e^2}{4\pi\epsilon_0 \hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+5/2} \qquad \text{Depend on :} \\ \approx (ML) \cong \frac{Z^3}{n^3} \left(\frac{e^2}{4\pi\epsilon_0 \hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+3/2} \qquad \qquad \text{Depend on :} \\ \approx \text{ element (Z)} \\ \approx \gamma \text{ ray energy} \end{cases}$$

The probability decreases rappidly with energy $\rightarrow Z = 80$, *E2* transitions $\alpha = 136 @ 50$ keV = 5.5 @ 100 keV = 2.7 10⁻² @ 500 keV Occur between states of the same spin and parity and no momentum is transferred.

- Cannot occur in the emission of a single photon.
- Energy is transferred to a high energy atomic electron.

Transition probability:
$$W(E0) = \frac{1}{\tau(E0)} = \rho^2(E0) \times [\Omega_{ic}(E0) + \Omega_{\pi}(E0)]$$

monopol
transition strength "electronic" (non-nuclear)
factors
monopole matrix element
Monopole transition strength: $\rho(E0) = \frac{\langle f | M(E0) | i \rangle}{eR^2}$ nuclear radius

The probability to decay through the E0 transition contains nuclear structure information that GOSIA cannot estimate.

> T. Kibedi, R.H. Spear Atomic Data and Nuclear Data Tables 89 (2005) 77–100 J. L. Wood et al., Nuclear Physics A 651 (1999) 323-368

Courtesy of K. Wrzosek-Lipska, HIL Warsaw

A special case: the E0 transition (1/2)

E0 transition in the GOSIA analysis

N. Bree PhD thesis, KU Leuven 2014

E0 transition in the GOSIA analysis

- ♦ declare a ≪ virtual ≫ state (e.g. 1⁺) in the LEVE section;
- ♦ declare the M1 matrix elements connecting 1⁺ states with the 2⁺ and 0⁺ states (NOTE → the 1⁺ state will not be populated in the excitation);
- "fake" M1 transitions simulate E0 -decay of the 2⁺₂ and 0⁺₂ states to the 2⁺₁ and 0⁺₁, respectively;
- ♦ declare the E0 yields in the yield file as a $0^+_2 \rightarrow 1^+_2$ and $2^+_2 \rightarrow 1^+_1$ transitions.

Spectroscopic data related with the E0 decay

Available spectroscopic data related with the EO decay,

e.g. BR (E2; $0_2^+ \rightarrow 2_1^+) / (E0; 0_2^+ \rightarrow 2_1^+)$ can be declared

in Gosia as additional data point.

These are expressed through the relevant matrix elements.

Courtesy of K. Wrzosek-Lipska, HIL Warsaw

Recent case for GOSIA: Mo, Kr, Hg, Po, Pb

Nuclei characterized by **coexisting shapes** having different deformations will exhibit **strong** ρ^2 (E0) values if the states associated with the coexisting shapes become **mixed**.

J. L. Wood et al., Nuclear Physics A 651 (1999) 323-368

Two-state mixing model

"Nuclear Structure from a Simple Perspective", R.F. Casten, Oxford University Press

 $\alpha_{J}^{2} + \beta_{J}^{2} = 1$

The relative position of the mixed states depends on the **unperturbed energy difference** and on the **strength of the mixing interaction V**

Two-state mixing model

"Nuclear Structure from a Simple Perspective", R.F. Casten, Oxford University Press

$$= 0$$

 $\alpha_{|}^{2} + \beta_{|}^{2} = 1$

Experimental E2 matrix elements can be expressed by:

- un-mixed E2 matrix elements
- mixing amplitudes (α₀, α₂, β₀, β₂) → fit to the energy levels (VMI model)