Nuclear deformation and shape coexistence

Kasia Hadyńska-Klęk

INFN Laboratori Nazionali di Legnaro

Nuclear shapes - examples

sphere

oblate

prolate

octupole deformed
prolate triaxial

More!

Coulomb excitation is a precise tool to measure collectivity of nuclear excitations - in particular nuclear shapes

The observables related to the quadrupole collectivity and shape of a nucleus are:

- the reduced transition probabilities
- spectroscopic quadrupole moments

Shape coexistance

Presence at low energy near-degenerate states in atomic nucleus characterized by different shape.

Interplay between two opposing tendencies

- Stabilizing effect of closed shells (subshells) \rightarrow sphericity
- Residual proton-neutron interaction \rightarrow deformation

A. Andreyev et al Nature 405:430 (2000)

Shape coexistence at and around closed proton and/or neutron (sub)shells.

What do we measure?

1. The level scheme
\rightarrow low-lying 0^{+}states.
2. EO transitions, $\rho^{2}(E 0)$:

$\rho^{2}(E O)=\left(Z^{2} / R_{0}{ }^{4}\right) \cdot \alpha^{2} \cdot \beta^{2}\left[\Delta\left\langle r^{2}\right\rangle\right]^{2}$
\rightarrow wave function mixing,
3. Reduced transition probabilities, $B(E 2)$.

$$
\begin{gathered}
P\left(T \lambda ; I_{i} \rightarrow I_{f}\right)=\frac{8 \pi(\lambda+1)}{\lambda((2 \lambda+1)!!)^{2}} \frac{1}{\hbar}\left(\frac{E_{\gamma}}{\hbar c}\right)^{2 \lambda+1} \cdot B\left(T \lambda ; I_{i} \rightarrow I_{f}\right) \\
B\left(T \lambda ; I_{i} \rightarrow I_{f}\right)=\frac{1}{2 I_{i}+1}\left|\left\langle I_{f}\|\hat{M}(T \lambda)\| I_{i}\right\rangle\right|^{2}
\end{gathered}
$$

4. Quadrupole moments Q .

What do we measure?

1. The level scheme
\rightarrow low-lying 0^{+}states.
2. EO transitions, $\rho^{2}(E 0)$:

$\rho^{2}(E O)=\left(Z^{2} / R_{0}{ }^{4}\right) \cdot \alpha^{2} \cdot \beta^{2}\left[\Delta\left\langle r^{2}\right\rangle\right]^{2}$
\rightarrow wave function mixing,
3. Reduced transition probabilities, $B(E 2)$.

$$
\begin{gathered}
P\left(T \lambda ; I_{i} \rightarrow I_{f}\right)=\frac{8 \pi(\lambda+1)}{\lambda((2 \lambda+1)!!)^{2}} \frac{1}{\hbar}\left(\frac{E_{\gamma}}{\hbar c}\right)^{2 \lambda+1} \cdot B\left(T \lambda ; I_{i} \rightarrow I_{f}\right) \\
B\left(T \lambda ; I_{i} \rightarrow I_{f}\right)=\frac{1}{2 I_{i}+1}\left|\left\langle I_{f}\|\hat{M}(T \lambda)\| I_{i}\right\rangle\right|^{2}
\end{gathered}
$$

4. Quadrupole moments Q .

Coulomb excitation and nuclear shapes

Quadrupole Sum Rules

- Electric multipole transition operator, $E(\lambda, \mu)$, is a spherical tensor and its zero-coupled products can be formed, which are rotationally invariant - they are identical and describe nuclear shape in both intrinsic frame and the laboratory frame
- The following parametrization of E2 operator is general, model independent and analogous to expressing the radial shape of a quadrupole-deformed object in terms of Bohr's shape parameters (β, v)

$$
\begin{gathered}
E(2,0)=Q \cos \delta \\
E(2,1)=E(2,-1)=0 \\
E(2,2)=E(2,-2)=(1 / \sqrt{2}) \cdot Q \sin \delta
\end{gathered}
$$

- Using this parametrization the zero-coupled products of the E2 operators can be formed in terms of \mathbf{Q} and $\boldsymbol{\delta}$

$$
\begin{gathered}
{[E 2 \times E 2]^{0}=\frac{1}{\sqrt{5}} Q^{2}} \\
\left\{[E 2 \times E 2]^{2} \times E 2\right\}^{0}=\frac{\sqrt{2}}{\sqrt{35}} Q^{3} \cos 3 \delta
\end{gathered}
$$

- the matrix elements of the E2 operator products can be evaluated using the basic intermediate state expansion

$$
\langle s|(E 2 \times E 2)^{J}|r\rangle=\frac{(-1)^{I_{s}+I_{r}}}{\left(2 I_{s}+1\right)^{1 / 2}} \sum_{t}\langle s\|E 2\| t\rangle\langle t\|E 2\| r\rangle\left\{\begin{array}{ccc}
2 & 2 & J \\
I_{s} & I_{r} & I_{t}
\end{array}\right\}
$$

Quadrupole Sum Rules - nuclear shapes

- Now let's combine the approaches:

$$
\begin{aligned}
\frac{\left\langle Q^{2}\right\rangle}{\sqrt{5}} & =\left\langle\mathrm{i}\left\|[E 2 \times E 2]_{0}\right\| \mathrm{i}\right\rangle \\
& =\frac{(-1)^{2 I_{i}}}{\sqrt{\left(2 I_{i}+1\right)}} \cdot \sum_{t}\langle\mathrm{i}\|E 2\| t\rangle\langle t\|E 2\| \mathrm{i}\rangle\left\{\begin{array}{ccc}
2 & 2 & 0 \\
I_{i} & I_{i} & I_{t}
\end{array}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\sqrt{\frac{2}{35}}\left\langle Q^{3} \cos (3 \delta)\right\rangle & =\left\langle\mathrm{i}\left\|\left[[E 2 \times E 2]_{2} \times E 2\right]_{0}\right\| \mathrm{i}\right\rangle \\
& =\frac{(\pm 1)}{\left(2 I_{i}+1\right)} \cdot \sum_{t, u}\langle\mathrm{i}\|E 2\| u\rangle\langle u\|E 2\| t\rangle\langle t\|E 2\| \mathrm{i}\rangle\left\{\begin{array}{lll}
2 & 2 & 2 \\
I_{i} & I_{t} & I_{u}
\end{array}\right\},
\end{aligned}
$$

Figure 7. A schematic illustration of an example products of $E 2$ matrix elements taken into account to calculate lowest order invariants: $\left\langle Q^{2}\right\rangle$ (left) and $\left\langle Q^{3} \cos (3 \delta)\right\rangle$ (right) for the case of the 0^{+}ground state of even-even nucleus.

TABLE IX. Contribution of individual matrix elements to the values of the $\left\langle 0_{1}^{+}\right| Q^{2}\left|O_{1}^{+}\right\rangle$and $\left\langle 0_{2}^{+}\right| Q^{2}\left|O_{2}^{+}\right\rangle$invariants in ${ }^{100} \mathrm{Mo}$. The $\sqrt{5} \times\left\{\begin{array}{lll}2 & 2 & 0 \\ 0 & 0 & 2\end{array}\right\}$ factor, multiplying the contributions according to Eqs. (3) and (4), is in this case equal to 1 .

State	Component $E 2 \times E 2$	Contribution to $\left\langle Q^{2}\right\rangle\left(e^{2} \mathrm{~b}^{2}\right)$				
	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	0.46				
0_{1}^{+}	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left(2_{2}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	0.01				
	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left(2_{3}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	0.0002				
	$\left\langle 0_{1}^{+}\right\| Q^{2}\left\|0_{1}^{+}\right\rangle$	$0.47(3)$				
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	0.26				
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	0.10				
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	0.25				
	$\left\langle 0_{2}^{+}\right\| Q^{2}\left\|0_{2}^{+}\right\rangle$	$0.62(3)$				

In practice..

K. WRZOSEK-LIPSKA et al. PHYSICAL REVIEW C 86, 064305 (2012)

TABLE X. Contribution of individual matrix elements to the values of the $\left\langle 0_{1}^{+}\right| Q^{3} \cos (3 \delta)\left|0_{1}^{+}\right\rangle$and $\left\langle 0_{2}^{+}\right| Q^{3} \cos (3 \delta)\left|0_{2}^{+}\right\rangle$invariants in ${ }^{100} \mathrm{Mo}$. Presented invariants, accordingly to Eqs. (5) and (6), result from the multiplication of the sum of all contributions by the factor $(-1) \times \sqrt{\frac{35}{2}} \times\left\{\begin{array}{lll}2 & 2 & 2 \\ 0 & 2 & 2\end{array}\right\}$, equal to -0.837 .

State	Component							
	$E 2 \times E 2 \times E 2$	Contribution to $\left\langle Q^{3} \cos 3 \delta\right\rangle\left(e^{3} \mathrm{~b}^{3}\right)$						
	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	-0.155						
	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	0.132						
	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	0.002						
0_{1}^{+}	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	0.013						
	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	-0.001						
	$\left\langle 0_{1}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 0_{1}^{+}\right\rangle$	-0.0001						
	Sum^{+}of all contributions	-0.009						
	$\left\langle 0_{1}^{+}\right\| Q^{3} \cos (3 \delta)\left\|0_{1}^{+}\right\rangle$	$0.01(6)$						
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 0_{2}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle$	-0.09						
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	-0.31						
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	-0.04						
0_{2}^{+}	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	0.12						
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	-0.13						
	$\left\langle 0_{2}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 2_{3}^{+}\right\rangle\left\langle 2_{3}^{+}\\|E 2\\| 0_{2}^{+}\right\rangle$	-0.06						
	Sum of all contributions	-0.51						
	$\left\langle 0_{2}^{+}\right\| Q^{3} \cos (3 \delta)\left\|0_{2}^{+}\right\rangle$	$0.42(6)$						

Quadrupole Sum Rules - nuclear shapes

- The lowest-order products of E2 operator provide information on the intrinsic quadrupole deformation parameters of a nucleus:
- the overall quadrupole deformation (Q^{2})
- the non-axiality parameter ($\operatorname{cos(3\overline {)})\text {):}}$

$$
\begin{aligned}
& \cos (3 \delta)=-1 \text { OBLATE, } \\
& \cos (3 \bar{\delta})=1 \text { PROLATE, } \\
& \cos (3 \delta)=0 \text { TRIAXIAL }
\end{aligned}
$$

A. Andreyev et al Nature 405:430 (2000)

- Higher order rotational invariants can be formed with the different J couplings, involving summation over different sets of the reduced E2 matrix elements

1. The sum rules derived from the rotational invariants allow measurement of the expectation values of rotational invariants built of \mathbf{Q} and δ
2. It is possible to find the statistical distribution of Q^{2} and $\cos 3 \delta$ i.e. the first statistical moments related to the softness in both parameters

SHAPE PARAMETERS

$$
\frac{1}{\sqrt{5}}\left\langle Q^{2}\right\rangle=\frac{1}{\sqrt{2 I_{i}+1}} \sum_{t}\langle i\|E 2\| t\rangle\langle t\|E 2\| f\rangle\left\{\begin{array}{lll}
2 & 2 & 0 \\
l_{i} & I_{f} & I_{t}
\end{array}\right\}
$$

$$
\left\langle Q^{3} \cos (3 \delta)\right\rangle=\mp \frac{\sqrt{35}}{\sqrt{2}} \frac{1}{\sqrt{2 I_{i}+1}} \sum_{t u}\langle s\|E 2\| u\rangle\langle u\|E 2\| t\rangle\langle t\|E 2\| s\rangle\left\{\begin{array}{lll}
2 & 2 & 2 \\
l_{s} & l_{t} & l_{u}
\end{array}\right\}
$$

$$
\cos 3 \delta\left\{\begin{array}{l}
\text { Centroid }\langle S| Q^{3} \cos 3 \delta|S\rangle \\
\text { Width } \left.\sigma(\cos 3 \delta)=\sqrt{\frac{\left\langle Q^{6} \cos ^{2} 3 \delta\right\rangle}{\left\langle Q^{6}\right\rangle}-\left(\frac{\left\langle Q^{3} \cos 3 \delta\right\rangle^{2}}{\left\langle Q^{3}\right\rangle}\right.}\right)^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \beta=\sqrt{\left\langle\beta^{2}\right\rangle}=\sqrt{\frac{\left\langle Q^{2}\right\rangle}{q_{0}^{2}}} \\
& \gamma=\arccos \langle\cos (3 \delta)\rangle
\end{aligned}
$$

Shape coexistence in ${ }^{42} \mathrm{Ca}$

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

Superdeformed band in ${ }^{40} \mathbf{C a}$ (DSAM, ANL)

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{E} 2 ; 4^{+} \rightarrow 2^{+}\right)=170 \mathrm{Wu} \\
& \mathrm{Q}_{\mathrm{t}}=1.80(+10.39,-0.29) \mathrm{eb} \\
& \beta_{2}=0.59(+0.11,-0.07)
\end{aligned}
$$

E. Ideguchi et al., PRL 87, 222501 (2001),
C.J. Chiara et al., PRC 67, 041303R (2003)

COULEX of ${ }^{42} \mathrm{Ca}$

- INFN LNL
- Beam: ${ }^{42} \mathrm{Ca}, 170 \mathrm{MeV}$
- Targets:
$-{ }^{208} \mathrm{~Pb}, 1 \mathrm{mg} / \mathrm{cm}^{2}$
$-{ }^{197} \mathrm{Au}, 1 \mathrm{mg} / \mathrm{cm}^{2}$
- AGATA: 3 triple clusters, 143.8 mm from the target
- DANTE: 3 MCP detectors, $100-144^{\circ}$

- Pb (208, 207, 206, 204)

V 511 keV

- ${ }^{43} \mathrm{Ca}$

GOSIA analysis - ${ }^{42} \mathrm{Ca}$

$\underline{I_{i}^{+} \rightarrow I_{f}^{+}}$	$\left\langle I_{i}\\|E 2\\| I_{f}\right\rangle\left[e \mathrm{fm}^{2}\right]$	$B\left(E 2 \downarrow\right.$ ¢ $\left.I_{i}^{+} \rightarrow I_{f}^{+}\right)$[W.u.]	
	Present	Present	Previous
$2_{1}^{+} \rightarrow 0_{1}^{+}$	$20.5{ }_{-0.6}^{+0.6}$	$9.7{ }_{-0.6}^{+0.6}$	9.3 ± 1 [36]
			11 ± 2 [28]
			9 ± 3 [27]
			8.5 ± 1.9 [45]
$4_{1}^{+} \rightarrow 2_{1}^{+}$	$24.3{ }_{-1.2}^{+1.2}$	$7.6_{-0.7}^{+0.7}$	50 ± 15 [28]
			11 ± 3 [27]
			10_{-8}^{+10} [45]
$6_{1}^{+} \rightarrow 4_{1}^{+}$	$9.3{ }_{-0.2}^{+0.2}$	$0.77_{-0.03}^{+0.03}$	0.7 ± 0.3 [27]
$0_{2}^{+} \rightarrow 2_{1}^{+}$	$22.2{ }_{-1.1}^{+1.1}$	57_{-6}^{+6}	64 ± 4 [27]
			100 ± 6 [28]
			55 ± 1 [42]
			64 ± 4 [45]
$2_{2}^{+} \rightarrow 0_{1}^{+}$	$-6.4{ }_{-03}^{+03}$	$1.0_{-0.1}^{+0.1}$	$2.2 \pm 0.6[28]$
			1.5 ± 0.5 [27]
			1.2 ± 0.3 [45]
$2_{2}^{+} \rightarrow 2_{1}^{+}$	$-23.7{ }_{-2.7}^{+23}$	$12.9{ }_{-25}^{+25}$	17 ± 11 [28]
			$19_{-14}^{+22}[27]$
			14_{-9}^{+35} [45]
$4_{2}^{+} \rightarrow 2_{1}^{+}$	42_{-4}^{+3}	23_{-4}^{+3}	30 ± 11 [28]
			16 ± 5 [27]
			12_{-4}^{+7} [45]
$2_{2}^{+} \rightarrow 0_{2}^{+}$	26_{-3}^{+5}	15_{-4}^{+6}	< 61 [27]
			< 46 [45]
$4_{2}^{+} \rightarrow 2_{2}^{+}$	46_{-6}^{+3}	27_{-6}^{+4}	60 ± 30 [27]
			$60 \pm 20[28]$
			$40_{-30}^{+40}[45]$
	$\left\langle I_{i}\\|E 2\\| I_{f}\right\rangle\left[e \mathrm{fm}^{2}\right]$	$\mathrm{Q}_{s p}\left[e \mathrm{fm}^{2}\right]$	
$2_{1}^{+} \rightarrow 2_{1}^{+}$	-16_{-3}^{+9}	-12_{-2}^{+7}	$-19 \pm 8[36]$
${ }_{2}^{+} \rightarrow 2_{2}^{+}$	-55_{-15}^{+15}	-42_{-12}^{+12}	

K. Hadyńska-Klęk, P. Napiorkowski, M. Zielińska et al., PRL 117, 062501 (2016)

2 experiments, 9 gamma yields

10 branching ratios

9 lifetimes
2 mixing ratio
1 known quadrupole moment

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

TABLE II. Experimental and theoretical shape parameters $\left\langle Q^{2}\right\rangle\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right], \sigma\left(Q^{2}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right]$ and $\cos (3 \delta)$.

	Present
state	$\left\langle Q^{2}\right\rangle$
$\mathbf{0}_{1}^{+}$	$500(20)$
$\mathbf{2}_{1}^{+}$	$900(100)$
$\mathbf{0}_{2}^{+}$	$1300(230)$
$\mathbf{2}_{2}^{+}$	$1400(250)$
	$\cos (3 \overline{0})$
	Present
$\mathbf{0}_{1}^{+}$	$0.06_{-0.10}^{+0.10}$
$\mathbf{0}_{2}^{+}$	$0.79_{-0.13}^{+0.13}$

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

TABLE II. Experimental and theoretical shape parameters $\left\langle Q^{2}\right\rangle\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right], \sigma\left(Q^{2}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right]$ and $\cos (3 \delta)$.

Increasing deformation in GSB and stable in the side band

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

$\cos (3 \overline{)}) \sim 0.8$ - slightly triaxial O_{2}

TABLE II. Experimental and theoretical shape parameters $\left\langle Q^{2}\right\rangle\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right], \sigma\left(Q^{2}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right]$ and $\cos (3 \delta)$.

	Present
state	$\left\langle Q^{2}\right\rangle$
$\mathbf{0}_{1}^{+}$	$500(20)$
$\mathbf{2}_{1}^{+}$	$900(100)$
$\mathbf{0}_{2}^{+}$	$1300(230)$
$\mathbf{2}_{2}^{+}$	$1400(250)$
	$\cos (3 \delta)$
	Present
$\mathbf{0}_{1}^{+}$	$0.06_{-0.10}^{+0.10}$
$\mathbf{0}_{2}^{+}$	$0.79_{-0.13}^{+0.13}$

cos(3ठ)~0 - triaxial GS??
In spherical ${ }^{40}$ Ca region?

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

$\cos (3 \delta) \sim 0.8$ - slightly triaxial O_{2}

TABLE II. Experimental and theoretical shape parameters $\left\langle Q^{2}\right\rangle\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right], \sigma\left(Q^{2}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right]$ and $\cos (3 \delta)$.

Non-zero deformation of the ground state?

$\cos (3 \overline{)}) \sim 0$ - triaxial GS??
In spherical ${ }^{40}$ Ca region?

SHAPE PARAMETERS

$$
\frac{1}{\sqrt{5}}\left\langle Q^{2}\right\rangle=\frac{1}{\sqrt{2 I_{i}+1}} \sum_{t}\langle i\|E 2\| t\rangle\langle t\|E 2\| f\rangle\left\{\begin{array}{lll}
2 & 2 & 0 \\
l_{i} & I_{f} & I_{t}
\end{array}\right\}
$$

$$
\left\langle Q^{3} \cos (3 \delta)\right\rangle=\mp \frac{\sqrt{35}}{\sqrt{2}} \frac{1}{\sqrt{2 I_{i}+1}} \sum_{t u}\langle s\|E 2\| u\rangle\langle u\|E 2\| t\rangle\langle t\|E 2\| s\rangle\left\{\begin{array}{lll}
2 & 2 & 2 \\
l_{s} & l_{t} & l_{u}
\end{array}\right\}
$$

$$
\cos 3 \delta\left\{\begin{array}{l}
\text { Centroid }\langle S| Q^{3} \cos 3 \delta|S\rangle \\
\text { Width } \left.\sigma(\cos 3 \delta)=\sqrt{\frac{\left\langle Q^{6} \cos ^{2} 3 \delta\right\rangle}{\left\langle Q^{6}\right\rangle}-\left(\frac{\left\langle Q^{3} \cos 3 \delta\right\rangle^{2}}{\left\langle Q^{3}\right\rangle}\right.}\right)^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \beta=\sqrt{\left\langle\beta^{2}\right\rangle}=\sqrt{\frac{\left\langle Q^{2}\right\rangle}{q_{0}^{2}}} \\
& \gamma=\arccos \langle\cos (3 \delta)\rangle
\end{aligned}
$$

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

$\cos (3 \delta) \sim 0.8$ - slightly triaxial O_{2}

TABLE II. Experimental and theoretical shape parameters $\left\langle Q^{2}\right\rangle\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right], \sigma\left(Q^{2}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right]$ and $\cos (3 \delta)$.

	Present
state	$\left\langle Q^{2}\right\rangle$
$\mathbf{0}_{1}^{+}$	$500(20)$
$\mathbf{2}_{1}^{+}$	$900(100)$
$\mathbf{0}_{2}^{+}$	$1300(230)$
$\mathbf{2}^{+}$	$1400(250)$
	$\cos (3 \delta)$
	Present
$\mathbf{0}_{1}^{+}$	$0.06_{-0.10}^{+0.10}$
$\mathbf{0}_{2}^{+}$	$0.79_{-0.13}^{+0.13}$

Non-zero deformation of the ground state?
> $0_{1} \beta=0.26(2)$ and $y=29(2)^{\circ}$
> $0_{2} \beta=0.43(2)$ and $y=13(6)^{\circ}$

$\cos (3 \delta) \sim 0$ - triaxial GS?? In spherical ${ }^{40}$ Ca region?

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

$\cos (3 \bar{\delta}) \sim 0.8$ - slightly triaxial O_{2}
TABLE II. Experimental and theoretical shape parameters $\left\langle Q^{2}\right\rangle\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right], \sigma\left(Q^{2}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right]$ and $\cos (3 \delta)$.

Non-zero deformation of the ground state?
> $0_{1} \beta=0.26(2)$ and $y=29(2)^{\circ}$
> $0_{2} \beta=0.43(2)$ and $y=13(6)^{\circ}$
$\cos (3 \overline{)}) \sim 0$ - triaxial GS?? In spherical ${ }^{40}$ Ca region?

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

Non-zero Q^{2} for the ground state could be caused by fluctuations around the spherical shape...

If so, the maximum triaxiality could be the effect of averaging over all possible shapes.

How can we check it?

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

Non-zero Q^{2} for the ground state could be caused by fluctuations around the spherical shape...

If so, the maximum triaxiality could be the effect of averaging over all possible shapes.

How can we check it?

The dispersion of $Q^{2}, \sigma\left(Q^{2}\right)$, should be comparable to Q^{2} value

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

Non-zero Q^{2} for the ground state could be caused by fluctuations around the spherical shape...

If so, the maximum triaxiality could be the effect of averaging over all possible shapes.

How can we check it?

The dispersion of $Q^{2}, \sigma\left(Q^{2}\right)$, should be comparable to Q^{2} value

What is dispersion?

Nuclear shapes AGAIN

$Q^{2}\left\{\begin{array}{l}\text { Centroid }\langle S| Q^{2}|S\rangle \\ \text { Width } \sigma\left(Q^{2}\right)=\sqrt{\left\langle Q^{4}\right\rangle-\left(\left\langle Q^{2}\right\rangle\right)^{2}}\end{array}\right.$
$\cos 3 \delta\left\{\begin{array}{l}\text { Centroid }\langle\mathrm{S}| \mathrm{Q}^{3} \cos 3 \delta|\mathrm{~S}\rangle \\ \left.\text { Width } \sigma(\cos 3 \delta)=\sqrt{\frac{\left\langle Q^{6} \cos ^{2} 3 \delta\right\rangle}{\left\langle Q^{6}\right\rangle}-\left(\frac{\left\langle Q^{3} \cos 3 \delta\right\rangle^{2}}{\left\langle Q^{3}\right\rangle}\right.}\right)^{\langle 1}\end{array}\right.$

$$
\sigma\left(Q^{2}\right)=\sqrt{\left\langle Q^{4}\right\rangle-\left\langle Q^{2}\right\rangle^{2}}
$$

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

The experimental data are insufficient... But we can try to use the theoretical predictions and the full set of ME from the calculations: - Large Scale Shell Model (F. Nowacki, H. Naidja - Strasbourg)

- Beyond Mean Field (T. Rodriguez - Madrid)

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

The experimental data are insufficient... But we can try to use the theoretical predictions and the full set of ME from the calculations: - Large Scale Shell Model (F. Nowacki, H. Naidja - Strasbourg)

- Beyond Mean Field (T. Rodriguez - Madrid)

Nuclear shapes in ${ }^{42} \mathrm{Ca}$

The experimental data are insufficient... But we can try to use the theoretical predictions and the full set of ME from the calculations:

- Large Scale Shell Model (F. Nowacki, H. Naidja - Strasbourg)
- Beyond Mean Field (T. Rodriguez - Madrid)

TABLE II. Experimental and theoretical shape parameters
$\left\langle Q^{2}\right\rangle\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right], \sigma\left(Q^{2}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{4}\right]$ and $\cos (3 \delta)$.

	Presen	LSSM		BMF	
state	$\left\langle Q^{2}\right\rangle$	$\left\langle Q^{2}\right\rangle$	$\sigma\left(Q^{2}\right)$	$\left\langle Q^{2}\right\rangle$	$\sigma\left(Q^{2}\right)$
$\mathbf{0}_{1}^{+}$	$500(20$	300	500	100	300
$\mathbf{2}_{1}^{+}$	$900(100)$	300	500	100	300
$\mathbf{0}_{2}^{+}$	$1300(23)$	1460	400	1900	400
$\mathbf{2}_{2}^{+}$	$1400(25)$	1390	200	1900	300
	$\cos (30)$				
	Present	LSSM	BMF		
$\mathbf{0}_{1}^{+}$	$0.06_{-0.10}^{+0.10}$	0.35	0.34		
$\mathbf{0}_{2}^{+}$	$0.79_{-0.13}^{+0.13}$	0.53	0.49		

0_{1} of ${ }^{42} \mathrm{Ca}$ is SPHERICAL with large fluctuations around minimum 0_{2} state is SLIGHTLY TRIAXIALIPROLATE shape

SIGMA

SIGMA

> Is a separate fortran program (you need to compile it like GOSIA)
> Very useful tool to evaluate the Quadrupole Sum Rule Method
> SIGMA uses the output files from GOSIA but can be also used separately (for expectation values estimation)
> Calculates the shape invariants and estimates their errors (if asked)
> Input is not complicated
> Output is full of information

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP, SIXJ in GOSIA to calculate the table of 6 j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)
- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP, SIXJ in GOSIA to calculate the table of 6 j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

```
sigma.inp
```

```
IL
NST
TAPE3.smr
TAPE15.err
TAPE14.tab
```

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP, SIXJ in GOSIA to calculate the table of 6 j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

SIGMA

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP, SIXJ in GOSIA to calculate the table of 6 j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)
sigma.inp

The mode of error calculations
-1 - no error estimation (SIGMA can be independent from GOSIA if you use this option)
0 - errors will be calculated only for Q2, three values of $\mathrm{v}(\mathrm{Q} 2)$ and four of cos3d for each state
99 - error will be calculated for each statistical moment (too long and complicated)

SIGMA

- You must run OP,ERRO in GOSIA to get TAPE3 (if CONT SMR, TAPE3 contains the output file for sum rules, IDF=1) and TAPE15
- You must run OP, SIXJ in GOSIA to calculate the table of 6 j coefficients (output file TAPE14) (can be inserted anywhere in the input file, even as the only option)

\qquad
$0.1313-0.0233 \quad 0.0281$

$\begin{gathered} \text { Q4(0) } \\ 0.0185 \end{gathered}$	VARIANCE 0.0012	-0.0002	ERROR 0.0002	SQRT 0.0349	VAR) -0.0033	$\begin{array}{rr}\text { ERROR } \\ 0.0033 & 0 .\end{array}$		
Q4(2)	VARIANCE		ERROR	SQRT(VAR)		$\begin{array}{r} \text { ERROR } \\ 0.0249 \end{array}$		
0.0292	0.0120	-0.0062	0.0061	0.1095	-0.0333		0.	
Q4(4)	VARIANCE		ERROR	SQRT(VAR)		$\begin{gathered} \text { ERROR } \\ 0.0481 \end{gathered}$		
0.0174	0.0002	-0.0053	0.0035	0.0124	**********		0.0	
Q6(0)	SKEWNESS		ERROR					
0.0026	-0.0001	0.0000	0.0000					
Q6(2)	SKEWNESS		ERROR					
0.0053	-0.0017	0.0000	0.0000					
Q6(4)	SKEWNESS		ERROR					
0.0027	0.0003	0.0000	0.0000					
Q3cos(3D) $\cos (3 \mathrm{D})$			$\begin{gathered} \text { ERROR } \\ 0.1257 \end{gathered}$	$\begin{aligned} & \text { INT.Q3 } \\ & 0.0488 \end{aligned}$				
0.0385	0.7882	-0.1262				σ		
Q5COS	(3D)(0) COS	(3D)	ERROR	$\begin{aligned} & \text { INT.Q5 } \\ & 0.0070 \end{aligned}$				
0.0051	0.7275	-0.1311	0.1240					
Q5COS(3D)(2) COS(3D)			$\begin{aligned} & \text { ERROR } \\ & 0.1608 \end{aligned}$	$\begin{array}{r} \text { IN } \\ 0.0123 \end{array}$				
0.0034	0.2763	-0.1246						
Q5COS(3D)(4) COS(3D)			$\begin{aligned} & \text { ERROR } \\ & 0.8310 \end{aligned}$	$\begin{gathered} \text { INT.Q5 } \\ 0.0067 \end{gathered}$				
0.0044	0.6573	-1.7129						
<COS2(3D)>(1) VARIANCE			$\begin{aligned} & \text { ERROR } \\ & 0.0000 \end{aligned}$	SQRT(VAR)		$\begin{aligned} & \text { ERROR } \\ & 0.0000 \end{aligned}$		
0.5604	-0.0609	0.0000		0.0000	0.0000			
<COS2(3D)>(2) VARIANCE			$\begin{aligned} & \text { ERROR } \\ & 0.0000 \end{aligned}$	SQRT(VAR)		$\begin{aligned} & \text { ERROR } \\ & 0.0000 \end{aligned}$		
0.4387	-0.1825	0.0000		0.0000	0.0000			
$\begin{aligned} & \text { <COS2 } \\ & 0.7389 \end{aligned}$	3D)>(3) VARIANCE$0.1176 \quad 0.0000$		$\begin{aligned} & \text { ERROR } \\ & 0.0000 \end{aligned}$	S0.3430	RT(VAR)	$\begin{array}{r} \text { ER } \\ 0.0000 \end{array}$		
			0.0000					

Conclusions

> Quadrupole sum rules method allows to study nuclear shapes in different states
> It can be useful when you want to compare the experimental results with theory
> SIGMA works with GOSIA \rightarrow fast calculations of nuclear shapes
(\rightarrow hands-on session)

Conversion electrons in GOSIA

- Coulex cross section calculation \rightarrow matrix elements determined from the γ-ray decay.
- A competetive to γ-ray emission is another electromagnetic process \rightarrow internal conversion.
- Usually electrons are not measured in Coulex run \rightarrow GOSIA evaluates the loss in conversion.
- OP, YIEL in GOSIA \rightarrow Internal Conversion Coeffcients for the $\mathbf{E} \boldsymbol{\lambda}$ and $\mathbf{M} \boldsymbol{\lambda}$ transitions.

$$
\alpha=\lambda_{\mathrm{e}} / \lambda_{\gamma}
$$

the ratio of the decay probability arising from γ emision $\left(\lambda_{\gamma}\right)$ and from electron emision (λ_{e}).

- A nonrelativistic calculation gives the analytic relations for α :

$$
\begin{array}{ll}
\alpha(E L) \cong \frac{\left(Z^{3}\right.}{n^{3}}\left(\frac{L}{L+1}\right)\left(\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}\right)^{4}\left(\frac{2 m_{\mathrm{e}} c^{2}}{(E))^{2}}\right)^{L+5 / 2)} & \\
\alpha(M L) \cong \frac{Z^{3}}{n^{3}}\left(\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}\right)^{4}\left(\frac{2 m_{\mathrm{e}} c^{2}}{E}\right)^{L+3 / 2} & \\
&
\end{array}
$$

The probability decreases rappidly with energy $\rightarrow Z=80, E 2$ transitions

$$
\begin{aligned}
\boldsymbol{\alpha} & =136 @ 50 \mathrm{keV} \\
& =5.5 @ 100 \mathrm{keV} \\
& =\mathbf{2 . 7} 10^{-2} @ 500 \mathrm{keV}
\end{aligned}
$$

A special case: the EO transition (1/2)

- Occur between states of the same spin and parity and no momentum is transferred.
- Cannot occur in the emission of a single photon.
- Energy is transferred to a high energy atomic electron.

Transition probability: $W(\mathrm{E} 0)=\frac{1}{\tau(\mathrm{E} 0)}=\underbrace{\rho^{2}(\mathrm{E} 0)} \times \underbrace{\text { transition strength }}_{\text {monopol }} \begin{gathered}\left.\Omega_{\mathrm{ic}}(\mathrm{E} 0)+\Omega_{\pi}(\mathrm{E} 0)\right]\end{gathered}$
Monopole transition strength: $\quad \rho(\mathrm{E} 0)=\frac{\langle f| M(\overleftarrow{\mathrm{E} 0)|i\rangle}}{e R^{2}}$ monopole matrix

The probability to decay through the EO transition contains nuclear structure information that GOSIA cannot estimate.
T. Kibedi, R.H. Spear Atomic Data and Nuclear Data Tables 89 (2005) 77-100

Coulex @ISOLDE : ${ }^{182} \mathrm{Hg}$

$>$ conversion of E2/M1 γ^{\prime} s
人 The decay of the $\mathrm{O}_{2}^{+}, 2^{+}$can occur through a gamma (E2, M1) or an electron (EO).

- Electrons are not measured in Coulex and the $\boldsymbol{E O}$ is not included in the de-excitation.
$>$ atomic production of K vacancy in ion-atom collision
N. Bree et al., NIM B360 (2015) 97
$>$ the EO transitions $\mathrm{O}_{2}{ }_{2} \rightarrow \mathrm{O}_{1}^{+}, 2^{+}{ }_{2} \rightarrow 2^{+}{ }_{1}$
- In heavy nuclei (e.g. Pb region) low-energy transitions can be strongly converted.
- For GOSIA, the $2^{+}{ }_{2}$ will decay only through the E2 or M1 transition.

- declare a << virtual >> state (e.g. 1^{+}) in the LEVE section;
- declare the M 1 matrix elements connecting 1^{+}states with the 2^{+}and 0^{+}states (NOTE \rightarrow the 1^{+}state will not be populated in the excitation);
- "fake" M1 transitions simulate EO -decay of the $\mathrm{2}^{+}{ }_{2}$ and $\mathrm{O}^{+}{ }_{2}$ states to the $\mathrm{2}^{+}{ }_{1}$ and $\mathrm{O}^{+}{ }_{1}$, respectively;
declare the $E O$ yields in the yield file as a $0^{+}{ }_{2} \rightarrow 1^{+}$and $2^{+}{ }_{2} \rightarrow 1^{+}{ }_{1}$ transitions.

Available spectroscopic data related with the EO decay, e.g. BR (E2; $\left.0^{+}{ }_{2} \rightarrow 2^{+}{ }_{1}\right) /\left(E O ; 0^{+}{ }_{2} \rightarrow 2^{+}{ }_{1}\right)$ can be declared in Gosia as additional data point.

These are expressed through the relevant matrix elements.

Nuclei characterized by coexisting shapes having different deformations will exhibit strong $\boldsymbol{\rho}^{\mathbf{2}} \mathbf{(E)}$) values if the states associated with the coexisting shapes become mixed.

$$
\alpha_{\jmath}^{2}+\beta_{\jmath}^{2}=1
$$

The relative position of the mixed states depends on the unperturbed energy difference and on the strength of the mixing interaction V

$$
\begin{gathered}
\left\langle J{ }_{\mathrm{I}}\right||E 2| \mid J_{\mathrm{II}}>=0 \\
\alpha_{\mathrm{J}}^{2}+\beta_{\mathrm{J}}^{2}=1
\end{gathered}
$$

Experimental E2 matrix elements can be expressed by:

- un-mixed $E 2$ matrix elements
- mixing amplitudes $\left(\alpha_{0}, \alpha_{2}, \beta_{0}, \beta_{2}\right) \rightarrow$ fit to the energy levels (VMI model)

